Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds.
نویسندگان
چکیده
Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately 50 μT/√Hz. This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques.
منابع مشابه
Fluorescence and spin properties of defects in single digit nanodiamonds.
This article reports stable photoluminescence and high-contrast optically detected electron spin resonance (ODESR) from single nitrogen-vacancy (NV) defect centers created within ultrasmall, disperse nanodiamonds of radius less than 4 nm. Unexpectedly, the efficiency for the production of NV fluorescent defects by electron irradiation is found to be independent of the size of the nanocrystals. ...
متن کاملMolecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds.
We propose a novel biomedical imaging technique, called nanodiamond imaging, that noninvasively records the three-dimensional distribution of biologically tagged nanodiamonds in vivo. Our technique performs optically detected electron spin resonance of nitrogen-vacancy centers in nanodiamonds, a nontoxic nanomaterial that is easily biologically functionalized. We demonstrate the feasibility of ...
متن کاملElectron spin control of optically levitated nanodiamonds in vacuum
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the ...
متن کاملNanodiamond molecular imaging with enhanced contrast and expanded field of view.
Nanodiamond imaging is a new molecular imaging modality that takes advantage of nitrogen-vacancy (NV) centers in nanodiamonds to image a distribution of nanodiamonds with high sensitivity and high spatial resolution. Since nanodiamonds are nontoxic and are easily conjugated to biomolecules, nanodiamond imaging can potentially elicit physiological information from within a living organism. The p...
متن کاملNitrogen-Vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing.
Nitrogen-Vacancy (NV) color center in diamond is a flourishing research area that, in recent years, has displayed remarkable progress. The system offers great potential for realizing futuristic applications in nanoscience, benefiting a range of fields from bioimaging to quantum-sensing. The ability to image single NV color centers in a nanodiamond and manipulate NV electron spin optically under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 34 شماره
صفحات -
تاریخ انتشار 2012